On the Edge Crossing Properties of Euclidean Minimum Weight Laman Graphs
نویسندگان
چکیده
This paper is concerned with the crossing number of Euclidean minimum-weight Laman graphs in the plane. We first investigate the relation between the Euclidean minimum-weight Laman graph and proximity graphs, and then we show that the Euclidean minimum-weight Laman graph is quasi-planar and 6-planar. Thus the crossing number of the Euclidean minimum-weight Laman graph is linear in the number of points.
منابع مشابه
Enumerating Planar Minimally Rigid Graphs
We present an algorithm for enumerating without repetitions all the planar (noncrossing) minimally rigid (Laman) graphs embedded on a given generic set of n points. Our algorithm is based on the Reverse search paradigm of Avis and Fukuda. It generates each output graph in O(n) time and O(n) space, or, with a slightly different implementation, in O(n) time and O(n) space. In particular, we obtai...
متن کاملAn Inductive Construction for Plane Laman Graphs via Vertex Splitting
We prove that all planar Laman graphs (i.e. minimally generically rigid graphs with a non-crossing planar embedding) can be generated from a single edge by a sequence of vertex splits. It has been shown recently [6,12] that a graph has a pointed pseudo-triangular embedding if and only if it is a planar Laman graph. Due to this connection, our result gives a new tool for attacking problems in th...
متن کاملThe Non-solvability by Radicals of Generic 3-connected Planar Laman Graphs
We show that planar embeddable 3-connected Laman graphs are generically non-soluble. A Laman graph represents a configuration of points on the Euclidean plane with just enough distance specifications between them to ensure rigidity. Formally, a Laman graph is a maximally independent graph, that is, one that satisfies the vertex-edge count 2v − 3 = e together with a corresponding inequality for ...
متن کاملCombinatorial and Geometric Properties of Planar Laman Graphs
Laman graphs naturally arise in structural mechanics and rigidity theory. Specifically, they characterize minimally rigid planar bar-and-joint systems which are frequently needed in robotics, as well as in molecular chemistry and polymer physics. We introduce three new combinatorial structures for planar Laman graphs: angular structures, angle labelings, and edge labelings. The latter two struc...
متن کاملDistinct edge geodetic decomposition in graphs
Let G=(V,E) be a simple connected graph of order p and size q. A decomposition of a graph G is a collection π of edge-disjoint subgraphs G_1,G_2,…,G_n of G such that every edge of G belongs to exactly one G_i,(1≤i ≤n). The decomposition 〖π={G〗_1,G_2,…,G_n} of a connected graph G is said to be a distinct edge geodetic decomposition if g_1 (G_i )≠g_1 (G_j ),(1≤i≠j≤n). The maximum cardinality of π...
متن کامل